Stochastic Volterra equations with Hölder diffusion coefficients

نویسندگان

چکیده

The existence of strong solutions and pathwise uniqueness are established for one-dimensional stochastic Volterra equations with locally Hölder continuous diffusion coefficients sufficiently regular kernels. Moreover, we study the sample path regularity, integrability semimartingale property to equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Rank Solution of Unsteady Diffusion Equations with Stochastic Coefficients

We study the solution of linear systems resulting from the discreitization of unsteady diffusion equations with stochastic coefficients. In particular, we focus on those linear systems that are obtained using the so-called stochastic Galerkin finite element method (SGFEM). These linear systems are usually very large with Kronecker product structure and, thus, solving them can be both timeand co...

متن کامل

Numerical Solution of Stochastic Differential Equations with Constant Diffusion Coefficients

We present Runge-Kutta methods of high accuracy for stochastic differential equations with constant diffusion coefficients. We analyze L2 convergence of these methods and present convergence proofs. For scalar equations a second-order method is derived, and for systems a method of order one-and-one-half is derived. We further consider a variance reduction technique based on Hermite expansions f...

متن کامل

Approximation of stochastic advection diffusion equations with finite difference scheme

In this paper, a high-order and conditionally stable stochastic difference scheme is proposed for the numerical solution of $rm Ithat{o}$ stochastic advection diffusion equation with one dimensional white noise process. We applied a finite difference approximation of fourth-order for discretizing space spatial derivative of this equation. The main properties of deterministic difference schemes,...

متن کامل

Volterra Equations with Fractional Stochastic Integrals

We assume that a probability space (Ω,η,P) is given, where Ω denotes the space C(R+, Rk) equipped with the topology of uniform convergence on compact sets, η the Borel σ-field of Ω, and P a probability measure on Ω. Let {Wt(ω) = ω(t), t ≥ 0} be a Wiener process. For any t ≥ 0, we define ηt = σ{ω(s); s < t}∨Z, where Z denotes the class of the elements in ηt which have zero P-measure. Pardoux and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2023

ISSN: ['1879-209X', '0304-4149']

DOI: https://doi.org/10.1016/j.spa.2023.04.005